
Does a Q-Learning NetLogo Extension Simplify the
Development of Agent-based Simulations?

Eloı́sa Bazzanella,1 Fernando Santos1

1Departamento de Engenharia de Software
Universidade do Estado de Santa Catarina (UDESC)

Ibirama – SC – Brazil

elobazzanella@gmail.com, fernando.santos@udesc.br

Abstract. Agent-based modeling and simulation is a simulation paradigm that
allows focusing on individuals, their interactions, and the complex behavior that
emerges from them. Agent-based simulations are typically developed in simu-
lation platforms that provide features related to agents. One such platform is
NetLogo, to which a reinforcement learning extension was made available re-
cently. The extension provides commands for using the Q-Learning algorithm,
but no evaluation on whether it simplifies the development of simulations is
available. This paper presents a quantitative evaluation on using the extension
in two simulations: the classic cliff walking problem; and a real-world, adaptive
traffic signal control (ATSC) simulation. Results show that the size of simula-
tions source code developed using the extension is smaller than those developed
without using it, giving evidence that the extension simplifies the development of
simulations

1. Introduction
Computer simulations have been used to study phenomena and support decision making.
For example, traffic simulations assist in the design of transport infrastructure, and evacu-
ation simulations assist the design of stadiums that can be quickly evacuated in emergency
situations. It is not trivial to develop analytical models that simulate the behavior of these
complex systems. Producing them is a task that has been extensively investigated in the
context of agent-based modeling and simulation (ABMS), a simulation paradigm that
makes use of agents to reproduce and study a phenomenon under investigation [6].

The ABMS paradigm allows focusing on the individuals (agents) and the impli-
cations resulting from their behavior and from the interaction among them. Artificial in-
telligence techniques can be incorporated into agents to enable them to adapt to changes
in themselves or in the environment [6]. One of such techniques is reinforcement learn-
ing, that enable agents to learn through experience. A well-known reinforcement learning
method is Q-Learning [16].

Although agent-based simulations can be developed with general-purpose lan-
guages such as Java, there are languages and platforms specifically tailored for develop-
ing agent-based simulations. These platforms provide agent and simulation features that
simplify the development of agent-based simulations. A popular agent-based simulation
platform is NetLogo [17]. Statistics show that, among all the simulations available in the
CoMSES [5] repository in 2020, 33.6% were developed in NetLogo. It provides its own
programming language, with high-level commands for operations frequently required in



agent-based simulations. There are modules (called extensions) that provide additional
commands and features for developing simulations. Recently, an extension that provides
commands for using the Q-Learning method in simulations was made available.1 How-
ever, no evaluation regarding whether this extension simplifies the development of agent-
based simulations is available.

In this paper we present a quantitative evaluation conducted to investigate whether
the existing NetLogo Q-Learning extension simplifies the development of simulations.
The evaluation considered two simulations: the classic cliff walking problem; and
an adaptive traffic signal control (ATSC) simulation. Both simulations were imple-
mented using the Q-Learning extension, and their source code were compared to exist-
ing Q-Learning implementations without the extension. For the comparison we used the
lines of code software size metric. Results show that the size of simulations source code
developed using the extension are 13.72% (cliff walking) and 47.06% (ATSC) smaller
than source codes developed without using it, giving evidence that the existing NetLogo
Q-Learning extension simplifies the development of simulations.

The remaining of this paper is organized as follows. Section 2 presents the
required background on ABMS, reinforcement learning, and the existing NetLogo
Q-Learning extension. In Section 3 we describe the conducted quantitative evaluation,
which includes: the adaptive traffic signal control simulation and the reasons why it was
selected for our study; the procedure and metric adopted in the evaluation; and the ob-
tained results. Finally, Section 4 presents concluding remarks and future work.

2. Background

This section presents concepts related to our quantitative evaluation. We first introduce the
ABMS paradigm. Then, we describe reinforcement learning, in particular the Q-Learning
algorithm. Finally, we present the existing Q-Learning NetLogo extension and detail how
it is used to incorporate the Q-Learning method into agent-based simulations.

2.1. Agent-based Modeling and Simulation

Agent-based modeling and simulation (ABMS) is a simulation paradigm that makes use
of agents to reproduce and study a phenomenon under investigation [6]. In the ABMS
paradigm, a simulation is composed of agents that can interact with each other and are
situated on an environment they can perceive and modify through their actions. Agents
have two fundamental properties: they are autonomous in their decision making towards
their objectives; and they are able to interact with each other. Agents are able to decide
based on logical deductions, just like human reasoning, or via deduction combined with a
decision-making mechanism. Additionally, agents can have different skills and architec-
tures, and they can perform distinct roles [18].

ABMS has been used to model and run simulations in many application domains,
such as traffic, ecology, economics and epidemiology [9]. In these cases, ABMS has been
chosen as the simulation paradigm because it is able to incorporate the inherent complex-
ity of individual behavior and interactions in real-world scenarios [9]. Artificial intelli-
gence techniques can be incorporated into agents to improve their behavior. Bazzan and

1https://github.com/agentbasedsimulations/qlearning-netlogo-extension



Klügl [3], for example, enumerate studies on applying agents endowed with intelligent
abilities to improve traffic and transportation systems.

Agent-based simulations can be developed with general-purpose programming
languages such as Java and Python. However, there are agent-based simulation platforms
which provide agent and simulation related features that ease the development of simu-
lations. One of such platforms is NetLogo [17]. NetLogo is a programmable modeling
environment that allows simulating natural and social phenomena. It provides a program-
ming language, with high-level commands for features frequently required in agent-based
simulations, such as for setting up the environment and moving agents through it. Ad-
ditional commands and features are provided via modules (called extensions). One of
such extensions, which is detailed next in Section 2.3, provides commands for using the
Q-Learning reinforcement learning method.

2.2. Reinforcement Learning
Humans usually learn through interactions with the environment. Throughout life, these
interactions are an important source of knowledge about the environment and about them-
selves. Learning through interaction is a fundamental idea of almost all theories of learn-
ing and intelligence [15].

There are learning methods that can be incorporated into agents to enable them
to learn over time. Reinforcement learning (RL) is one of such methods, in which an
agent learn through experience. According to Monteiro and Ribeiro [11], RL is “a com-
putational learning paradigm in which a learning agent seeks to maximize a performance
measure based on the reinforcement (reward or punishment) it receives when acting on
an unknown environment”. RL methods often adopt a state-based representation of the
environment. Periodically, the agent must select which action to execute. When an action
is executed, the agent receives a reward signal based on the outcomes of previous states
and actions. By observing the reward received when executing different actions on differ-
ent states for a period of time, an agent running a RL method is able to learn an optimal
control policy (one that maximizes the expected reward).

Q-Learning [16] is one of the available RL methods. Q-Learning works by esti-
mating optimal state-action values, named Q-values. Each Q-value is a numerical estima-
tor of quality for a given pair of state and action. Therefore, a Q-value Q(s, a) represents
the maximum discounted sum of future rewards the agent can expect to receive if it starts
in state s, choose action a, and then continues to follow an optimal policy.

Q-Learning maintains a data structure called Q-table, which stores a Q-value for
every pair (s, a). As the agent acts on the environment, Q(s, a) values are updated to
consider the reward signal r received when the action a is executed in state s. In addition
to a set S of states and A of actions, Q-Learning has two parameters: a learning rate α
and a discount factor γ. The first specifies how much of the agent expertise is replaced by
the outcomes of recently experienced actions. The last describes the agent preference for
immediate over future rewards.

Figure 1 shows the Q-Learning algorithm. Q-Learning lets the agent run for a
number of episodes. In each episode the agent starts from an initial state and goes through
countless states until it reaches a terminal state. At each step, the agent selects an action
a for the current state s using a selection policy. Greedy action selection policies exploit



Input: S, A, α ∈ (0, 1) γ ∈ (0, 1)
foreach episode do

s← initial state
repeat

choose an action a for state s using a selection policy (e.g., ε-greedy)
perform the action a
observe the new state s′ and the reward r received
update Q-table:
Q(a, s)← Q(a, s) + α(r + γ maxa Q(a

′, s′)−Q(a, s))
s← s′

until s 6= terminal state;
end

Figure 1. Q-Learning algorithm. Adapted from Russel and Norvig [13]

the current agent expertise and increase immediate reward. However, with such greedy
policies the agent may not explore some actions and end up learning sub-optimal control
policies. An alternative selection policy commonly used with Q-Learning to avoid sub-
optimal policies is the ε-greedy [15]. With ε-greedy the agent behaves greedily most of
the time, but with probability ε it selects an action at random. The ε value is decreased by
an ε-decay rate to let the agent exploit the optimal policy after a learning period.

Following the Q-Learning algorithm, the chosen action is performed by the agent,
which observes the new state s′ and the reward r received. The Q(a, s) value is then
updated in the Q-table according the Q-Learning update rule, which considers the learning
rate α, the reward r, the discount factor γ, and the expected future reward provided by
following the optimal policy for the new state s′ onward (given by the action a′ that
maximizes Q(a′, s′)). Finally, the current state s is updated and the learning process is
repeated until the agent reaches a terminal state.

2.3. Q-Learning NetLogo Extension

An extension is a NetLogo module that extends its programming language with additional
commands and features. Recently, a NetLogo extension with a ready-to-use implementa-
tion of the Q-Learning algorithm was made available [7]. The extension provides addi-
tional NetLogo commands to specify the following Q-Learning elements: states, actions,
the reward, the action selection policy, the end of episode clause, the episode reset pro-
cedure, learning rate, and discount factor. In addition, the extension also provides com-
mands to execute the Q-Learning algorithm when the agent is expected to act and learn.
The extension, called Q-Learning Extension, can be installed via the NetLogo Extension
Manager and its documentation is available online.1

We describe how the Q-Learning extension works by means of the classic cliff
walking problem [15] shown in Figure 2. In this problem the environment is a grid, in
which a subset of cells represents a cliff. The goal of a Walker agent is to learn how to
go from the starting cell S to the goal cell G without falling off the cliff (gray cells). The
agent can move up, down, right, and left. A learning episode ends when the agent reaches
the goal cell or falls off the cliff. If the agent falls off, its reward is -100; otherwise, its
reward is -1 for each cell it has visited.



Figure 2. Cliff walking problem. Adapted from Sutton and Barto [15]

The NetLogo source code developed with the Q-Learning extension for the cliff
walking problem is partially shown in Figure 3.2 The setup procedure (lines 1–12) is
where the simulation is set up. The ask block in lines 3–11 requests that all Walker
agents execute a few commands provided by the Q-Learning extension in order to set up
the Q-Learning algorithm. These commands are described next.

1 to setup
2 clear−all
3 ask Walkers [
4 qlearningextension:state−def [”xcor” ”ycor”]
5 (qlearningextension:actions [goUp] [goDown] [goLeft] [goRight])
6 qlearningextension:reward [rewardFunc]
7 qlearningextension:learning−rate 0.4
8 qlearningextension:discount−factor 0.2
9 qlearningextension:action−selection ”e−greedy” [0.8 0.99]

10 ]
11 end
12
13 to go
14 ask Walkers [
15 qlearningextension:act
16 qlearningextension:learn
17 ]
18 end

Figure 3. Cliff Walking Simulation Implemented with the Q-Learning Extension

The qlearningextension:state-def command (line 4) specifies the state rep-
resentation. This command takes as argument a list of agent variables (attributes) whose
values characterize a state. In the cliff walking, the state is characterized by the x and y
coordinates of the agent position (stored by the xcor and ycor agent attributes).

To specify the actions considered by the Q-Learning algorithm, the extension pro-
vides the qlearningextension:actions command (line 5). This command takes as
argument a list of NetLogo procedures, each of them corresponds to an action the agent
can execute. In the cliff walking simulation, goUp, goDown, goLeft, and goRight proce-
dures are implemented by the developer to move the agent towards these directions.

2We refer the reader to Kons and Santos [8] for the complete source code of the cliff walking simulation.



To specify the reward received by the agent whenever it acts, the ex-
tension provides the qlearningextension:reward command (line 6). The de-
veloper only needs to inform the procedure that computes and returns the re-
ward value. To specify the learning rate and the discount factor, the exten-
sion provides the commands qlearningextension:learning-rate (line 7) and
qlearningextension:discount-factor (line 8), respectively.

The extension provides two action selection policies: random-normal and
ε-greedy. Both select an action at random with a given probability. However, in the
ε-greedy policy such a probability is periodically reduced by a factor, as described earlier
in Section 2.2. To specify the action selection policy, the extension provides the com-
mand qlearningextension:action-selection, that takes as argument the name of
the policy and a list with its parameters (line 9).

The go procedure (lines 13–18) is where the behavior of the Walker agents is
implemented. The extension provides two commands to activate the Q-Learning algo-
rithm. The qlearningextension:act command (line 15) makes the agent choose and
run an action according to the selection policy. The qlearningextension:learn com-
mand (line 16) makes the agent observe the new state and reward received, and update the
Q-table, as described previously in Section 2.2.

As it can be seen, by using the commands provided by extension a developer does
not need to implement the Q-Learning algorithm from scratch. However, it is worth to
mention that there is no evaluation of whether this extension simplifies the development
of agent-based simulations. We conducted such evaluation in the present paper.

3. Quantitative Evaluation
The goal of the evaluation is to investigate whether the existing Q-Learning NetLogo ex-
tension simplifies the development of simulations. The evaluation considered two simula-
tions: the cliff walking simulation described in Section 2.3, and an adaptive traffic signal
control (ATSC) simulation. The latter was chosen because ATSC is a real-world prob-
lem in which successful applications of intelligent agents have been reported [2, 3]. This
section describes the ATSC simulation, the evaluation procedure, and obtained results.

3.1. The ATSC Simulation with Q-Learning
In the area of traffic signal control, the goal is to develop traffic control systems that
(i) maximize the overall capacity of the traffic network; (ii) maximize capacity of criti-
cal routes and intersection that represent bottlenecks; (iii) minimize negative impacts of
traffic on the environment and energy consumption; (iv) minimize travel times; and (v) in-
crease traffic safety [2]. In such systems, traffic signal devices (e.g., traffic lights) are used
to control the traffic flow. In scenarios with complex traffic demands, traffic control sys-
tems should be able to adapt their policies to the current traffic conditions. Agent-based
systems is an alternative that has been considered for creating these ATSC systems. By
being endowed with learning capabilities, agents can learn traffic control policies in real
time and thus optimize the overall traffic flow considering the existing infrastructure [10].

The environment of an ATSC simulation is a traffic network, which is composed of
links and nodes that represent road lanes and intersections, respectively. In this paper, we
adopted the model proposed by Oliveira and Bazzan [12], which specifies a traffic signal



(a) Traffic Network
(b) Available Traffic Signal Plans

Figure 4. Elements of the ATSC Simulation

controller (TSC) agent in charge of managing traffic light indicators. TSC agents are
created at intersection and perceive the queue length on incoming lanes. The design of a
TSC agent involves a set of concepts from the traffic control domain, which are described
next. A stage describes a particular set of allowed traffic movements for vehicles in the
lanes of the intersection. A phase is a period in which the indicators of the corresponding
stage are green, allowing the traffic flow. Finally, a plan is a set of phases assigned to
stages plus the sequence in which they are activated.

Figure 4a shows the traffic network considered in the evaluation. The network
is composed of two one-way lanes. Vehicles on the vertical lane move from north to
south, while on the horizontal lane they move from west to east. Each lane is 32 units
long, which means that there can be at most 16 vehicles stopped on each direction at the
intersection, waiting for the green light to cross it. The simplicity of this network allows
focusing on the use of the Q-Learning algorithm, which is the goal of our evaluation.
Figure 4b shows the two plans adopted in our simulation. Each plan has a total duration
of 45 seconds. Plan 1 allows the traffic to flow north/south in the first 30 seconds, and
then west/east in the last 15 seconds. In turn, plan 2 allows the traffic to flow north/south
in the first 15 seconds, and then west/east in the last 30 seconds. Therefore, plan 1 gives
priority to the north/south flow, and plan 2 to the west/east flow. In our simulation, a new
vehicle is inserted on the vertical lane at every 4 seconds, while in the horizontal lane
a new vehicle is inserted at every 15 seconds. Consequently, the traffic demand on the
vertical lane is about 3.75 times higher than on the horizontal lane.

The Q-Learning specification for this ATSC simulation follows from Oliveira and
Bazzan [12] and Santos et al. [14]. The goal of using Q-Learning in this simulation is
to allow the TSC agent to learn which plan should be executed at every 45 seconds so
as to minimizes the traffic jam (stopped vehicles) at intersections. The state definition is
based on the queue length of the incoming lanes, and it is represented by a pair of values
that corresponds to the number of stopped vehicles on each lane. Therefore, the state s
at a particular instant is given by (stopped north, stopped west). Each traffic signal plan
is considered as an action, and therefore A = {plan1, plan2}. The reward is given by
0 - (stopped north + stopped west), which means that the higher the number of stopped
vehicles at both lanes, the lower the reward received by the agent.



3.2. Procedure and Metrics

We adopted the following procedure to conduct the evaluation: (i) we implemented both
simulations (cliff walking and ATSC) using the Q-Learning extension; and (ii) their
source code was compared to other source codes implemented without the extension.
The metric we selected for the comparison is the size of the simulation source code. More
specifically, we use the number of lines of code (LoC), which is often used as a software
size metric in cost estimation methods, such as Function Points [1] and COCOMO [4].

To assert that the implementations using the Q-Learning extension were consis-
tent, we ran both simulations and inspected the policies learned by the agents. Regarding
the Q-Learning parameters, we adopted α = 0.1; γ = 0.3 for both simulations. For the
cliff walking simulation, we adopted random-normal = 0.7. And for the ATSC simula-
tion, we adopted ε = 0.7 and ε-decay = 0.995. The ATSC simulation results are based
on 5 runs of 86400 ticks each.3. The cliff walking results are based on 5 runs of 350 ticks.

Table 1 shows the agent Q-table with the Q-value average for each pair state-
action after running the cliff walking simulation. The maximum Q-value for each state,
which correspond to the control policy learned by the agent, is emphasized with bold. As
we can see, the max values are in the state-action pairs that form the optimal policy. For
example, in the initial state (0,0), the policy indicates to execute the Up action, so as to
move towards the target without falling off the cliff. Then, the policy indicates to execute
the Right action, to keep going towards the goal. Finally, the policy indicates to execute
the Down action when the agent is located above the goal state.

Table 1. Q-Table of the Cliff Walking Simulation

States Actions
(x,y) Right Down Left Up

(0, 0) -99,9999 -1,4281 -1,4282 -1,4277
(0, 1) -1,4259 -1,4280 -1,4272 -1,4267
(0, 2) -1,4248 -1,4255 -1,4254 -1,4252
(1, 1) -1,4207 -99,8333 -1,4253 -1,4235
(1, 2) -1,4209 -1,4217 -1,4237 -1,4214
(2, 1) -1,4075 -99,5073 -1,4138 -1,4109
(2, 2) -1,4123 -1,4134 -1,4174 -1,4146
(3, 1) -1,3727 -96,9192 -1,3873 -1,3869
(3, 2) -1,3931 -1,3941 -1,4004 -1,3991
(4, 1) -1,2776 -91,2390 -1,3335 -1,3335
(4, 2) -1,3505 -1,3535 -1,3697 -1,3548
(5, 1) -1,1439 -0,9911 -1,1997 -1,2276
(5, 2) -1,3006 -1,2678 -1,3006 -1,2976

Table 2 shows the Q-table for the ATSC agent. Only the states explored by the
agent are shown. In this simulation, the agent learned to always choose the Plan 1 action,
given that the traffic demand in the vertical lane is higher than the horizontal lane, as
previously detailed in Section 3.1.

3We assume 1 tick = 1 second, thus we simulate a 24h learning period for the TSC agent.



Table 2. Q-Table of the ATSC Simulation

States Actions States Actions
stopped vehicles stopped vehicles

(north, west) Plan 1 Plan 2 (north, west) Plan 1 Plan 2

(4, 2) -9,8587 -13,9570 (10, 2) -9,6641 -16,1368
(5, 2) -9,5479 -13,5261 (11, 1) -2,5743 -4,7753
(6, 2) -8,6826 -10,6698 (11, 2) -9,8594 -18,6116
(7, 2) -1,1338 -1,7662 (12, 1) -2,1176 -5,0304
(8, 2) -4,2193 -7,3978 (13, 1) -7,9200 -11,5943
(9, 1) -8,8922 -18,0331 (14, 1) -13,7738 -21,0598
(9, 2) -9,4045 -15,6132 (15, 1) -14,2968 -19,0880
(10, 1) -9,8652 -19,4982 (16, 1) -15,6289 -21,1684

Our evaluation is focused on the use of the Q-Learning algorithm. Therefore,
only the LoC related to the agent’s implementation were considered to compare the size
of simulations source code. Blank lines, code comments, and code block delimiters were
ignored. To avoid biases related to the source code indentation, we followed the conven-
tions adopted in the simulations available in the NetLogo model library, in which each
line contains a single code statement. The simulations source code is available online.4

3.3. Results and Discussions

Obtained results are shown in Table 3. To clarify the effects of using the Q-Learning
NetLogo extension on the source code, we grouped the number of LoC by the following
aspects regarding the simulation: types and variables (T&V), setup, and execution. The
T&V aspect groups LoC for importing extensions and libraries, as well the definition
of breeds and their variables. The setup aspect groups LoC related to the initialization
of the simulation. In the ATSC simulation, such initialization consists of creating the
traffic network, vehicles, and the TSC agent. In the cliff walking simulation, it consists
of creating the cliff landscape and the Walker agent. Finally, the execution aspect groups
LoC related to the behavior of agents.

Table 3. LoC of the Evaluated Simulations

Q-Learning Implementation T&V Setup Execution Total

Cliff Walking

Original, without the extension 15 30 51 96
Using the extension 9 30 44 83

Adaptive Traffic Signal Control (ATSC)

Original, without the extension [14] 27 23 119 170
Using the extension 16 18 63 97

4https://github.com/agentbasedsimulations/2021-wesaac-qlearning-netlogo-ext-evaluation-extras



With respect to T&V, by using the Q-Learning extension there is a reduction of 6
LoC in the cliff walking simulation (40%). In turn, the ATSC simulation using the ex-
tension required 11 (40.74%) few LoC. Without using the extension, both ATSC and cliff
walking require extra LoC to specify additional agent variables and data structures to store
all Q-Learning elements. These additional variables and data structures are encapsulated
by the extension, so the developer does not need to declare them.

For the setup aspect, the size of the cliff walking source code is the same in both
simulations. Regarding the ATSC simulation, the number of LoC was reduced by 21.74%
(5 LoC). Such a reduction is because without the extension, additional LoC are required
to initialize the Q-Learning algorithm, more specifically the Q-table data structure.

Concerning the execution aspect, the use of the extension produced source codes
with fewer LoC in both simulations: 47.06% fewer in the ATSC simulation (73 LoC), and
13,72% fewer in the cliff walking (7 LoC). These reductions are due to the fact that by
using the extension, the developer does not need to implement the Q-Learning algorithm
previously described in Section 2.2. Instead, the developer only needs to invoke the learn
and act commands, or the learning command, provided by the extension.

Overall, the agents source code developed using the extension was 13,54% (cliff
walking) and 42.94% (ATSC) smaller than those developed without using it, which shows
that the existing Q-Learning extension simplifies the development of simulations. Al-
though our evaluation considered only these two simulations, which may raise questions
regarding the generalization of the results for other domains, it is important to notice that
the reduction in the number of LoC is due to the use of the commands provided by the
extension. These Q-learning related commands are domain independent, which suggests
that other simulations would also benefit from using the extension.

4. Conclusion
The agent-based modeling and simulation paradigm has been used to model and run sim-
ulations focused on the behavior of individuals and on the complexity that emerge from
them. Agent-based simulations are usually developed in agent-based simulation plat-
forms, as they provide features inherent to agents. NetLogo is a popular agent-based sim-
ulation platform, to which a reinforcement learning extension was recently made avail-
able. The extension provides commands for using the Q-Learning reinforcement learning
algorithm. However, no evaluation on whether such extension simplifies the development
of agent-based simulations was available yet.

In this paper, we conducted a quantitative evaluation to investigate whether the
existing NetLogo Q-Learning extension simplifies the development of simulations. The
evaluation considered two simulations: the classic cliff walking, and an adaptive traf-
fic control simulation. Both simulation were implemented using the extension, and their
source code were compared to existing implementations considering lines of code soft-
ware size metric. The results showed that by using the extension the number of lines of
code was reduced by 13.72% in the cliff walking simulation, and by 47.06% in the adap-
tive traffic signal control simulation. This gives evidence that the existing Q-Learning
extension simplifies the development of simulations with NetLogo.

As future work, additional studies can be conducted with other simulations, to ver-
ify how our findings generalize to other agent-based simulation domains. Furthermore,



runtime might be a bottleneck in reinforcement learning applications, specifically when
several agents learn simultaneously. Future studies should be conducted to investigate
the scalability of the Q-Learning extension, given that execution time and memory con-
sumption are out of the scope of this paper. Another possible work is to conduct an user
study with humans, to evaluate if using the Q-Learning extension would also reduces the
cognitive and development effort.

References
[1] Allan J Albrecht. Measuring application development productivity. In Proceedings

of the joint SHARE/GUIDE/IBM application development symposium, volume 10,
pages 83–92, 1979.

[2] Ana L. C. Bazzan. Opportunities for multiagent systems and multiagent reinforce-
ment learning in traffic control. Autonomous Agents and Multiagent Systems, 18(3):
342–375, June 2009.

[3] Ana L. C. Bazzan and Franziska Klügl. A review on agent-based technology for
traffic and transportation. The Knowledge Engineering Review, FirstView:1–29, 4
2013.

[4] Barry Boehm, Bradford Clark, Ellis Horowitz, Chris Westland, Ray Madachy, and
Richard Selby. Cost models for future software life cycle processes: COCOMO 2.0.
Annals of Software Engineering, 1(1):57–94, 1995.

[5] CoMSES. CoMSES Catalog, 2020. URL https://catalog.
comses.net/visualization/. https://catalog.comses.net/
visualization/, Acesso em: Jul/2020.

[6] Franziska Klügl and Ana L. C. Bazzan. Agent-based modeling and simulation. AI
Magazine, 33(3):29–40, 2012.

[7] Kevin Kons. Biblioteca Q-Learning para desenvolvimento de simulações com
agentes na plataforma NetLogo. Trabalho de conclusão de curso, Universidade do
Estado de Santa Catarina (UDESC), 2019.

[8] Kevin Kons and Fernando Santos. Cliff walking with q-learning
netlogo extension. CoMSES Computational Model Library, 2019.
Retrieved from: https://www.comses.net/codebases/
b938a820-f209-4648-afc6-0946657c3484/releases/1.0.0/.

[9] Charles Macal and Michael North. Introductory tutorial: Agent-based modeling
and simulation. In Proceedings of the 2014 Winter Simulation Conference, WSC
’14, pages 6–20, Piscataway, NJ, USA, 2014. IEEE Press.

[10] Patrick Mannion, Jim Duggan, and Enda Howley. An experimental review of re-
inforcement learning algorithms for adaptive traffic signal control. In Leo Thomas
McCluskey, Apostolos Kotsialos, P. Jörg Müller, Franziska Klügl, Omer Rana, and
René Schumann, editors, Autonomic Road Transport Support Systems, pages 47–66.
Springer, 2016.

[11] S. T. Monteiro and C. H. C. Ribeiro. Desempenho de algoritmos de aprendizagem
por reforço sob condições de ambiguidade sensorial em robótica móvel. Revista
Controle & Automação, 15(3):320–338, 2004.

[12] D. de. Oliveira and A. L. C. Bazzan. Multiagent learning on traffic lights control:
effects of using shared information. IGI Global, pages 307–321, 2009.

[13] Stuart Russel and Peter Norvig. Inteligência Artificial. Rio de Janeiro: Campus, 2
edition, 2004.



[14] Fernando Santos, Ingrid Nunes, and Ana L. C. Bazzan. Model-driven agent-based
simulation development: a modeling language and empirical evaluation in the adap-
tive traffic signal control domain. Simulation Modelling Practice and Theory, 83:
162–187, April 2018.

[15] Richard S. Sutton and Andrew G. Barto. Reinforcement learning: An introduction.
MIT press, 2 edition, 2018.

[16] Christopher J. C. H. Watkins and Peter Dayan. Q-learning. Machine learning, 33
(3–4):279–292, 1992.

[17] Uri Wilensky. NetLogo, 1999. URL http://ccl.northwestern.edu/
netlogo/. Center for Connected Learning and Computer-Based Modeling, North-
western University. Evanston, IL.

[18] Michael Wooldridge. An introduction to multiagent systems. John Wiley & Sons,
2009.


