
The Impact of Norms Generality on MAS Goal
Jhonatan Alves , Jomi Fred Hübner , Jerusa Marchi

1Federal University of Santa Catarina (UFSC)
Florianópolis – Brazil

jhonatan.alves@posgrad.ufsc.br,{jomi.hubner,jerusa.marchi}@ufsc.br

Abstract. In this paper we aim to investigate the impact of levels of generality
on norms synthesized on the global goal satisfiability and conflicts avoidance
of Normative Multiagent Systems. We found out that exists a level of gener-
ality in the scenarios we perform some experiments, which we call apex level,
where norms tend to be efficient in avoiding conflicts while ensuring goal system
reachability.

1. Introduction
Norms are a topic of interest in many research areas. In Multiagent systems (MAS)
they are generally understood as rules which, in certain contexts, impose restrictions on
agent’s behavior indicating which actions are allowed, prohibited or obligatory to achieve
social order [Boella and van der Torre 2004]. Among the topics investigated on the norms
subject in the MAS’ field, we have the synthesis which refers to the process of creating a
set of norms to regulate the agents. Basically, norms can be synthesized in two different
ways: manually - where a designer produces the set of norms; or automatically - where a
computational mechanism processes such synthesis [Frantz and Pigozz 2018].

Although the automated synthesis may provide certain advantages as time saving
and standardization of results, it is a complex problem [Shoham and Tennenholtz 1995]
and some important issues must be considered in this process to the resulting norms reg-
ulate the agents efficiently balancing control and autonomy. One of those problems is the
synthesis of mildly restrictive norms, which barely regulate the agents giving them much
freedom to act as they wish and, consequently, allowing conflicts during the system exe-
cution. Another problem is the synthesis of strict norms which, in turn, may excessively
regulate the agents giving them low freedom to perform their actions preventing them
from executing the necessary actions for the system fulfills its goal.

Given two norms n1 and n2, we say that norm n1 is more generic than norm n2
if it regulates the behaviors that norm n2 does, however the opposite does not occur.
For example, a norm which prohibits agents to move between two adjacent vertices in
a grid is more generic than a norm which prohibits only the agent Bob to perform such
action. The norm n1 prohibits all agents to move, thus the behaviors regulated by norm
n2 are regulated by norm n1 as well. Such norm is a strict one and turns the system goal
unreachable since the agents get stuck in their depart vertices. On the other hand, norm
n2 is less restraining, since just Bob cannot move, thus the set of behaviors regulated by
norm n2 does not include those regulated by norm n1. Norm n2 is mildly restrictive and it
is not capable to avoid conflicts since when the other agents move collisions may occur.

In this sense, exploring the generality of norms is a fundamental key to obtain
a set of norms which constrains the agents avoiding conflicts and making the system

goal feasible to be reached. Although different mechanisms for the automated norm syn-
thesis have been proposed [Onn and Tennenholtz 1997, Boella and van der Torre 2007,
Savarimuthu et al. 2008, Christelis and Rovatsos 2009, Morales et al. 2011], just a few of
them [Fitoussi and Tennenholtz 1998, Morales et al. 2013, Morales et al. 2014] consider
such generality as part of the synthesis scope to measure how generic norms must be to
obtain norms that are not mildly restrictive nor too restraining.

In this paper our aim is to investigate how the generality of norms impacts on
the system’s goals reachability. For this, we propose a model in which the norms are
organized in levels of generality so that it is possible to correlate the generalities with the
capability to avoid conflicts and keep the objectives of the system attainable. According
to our experiments, there exists at least one intermediate level of generality, which we
call apex level, where some norms are capable to maximize the goal reachability and
minimize the conflicts’ occurrence. We intend to use this information to posteriorly build
a synthesis algorithm which use them as a heuristic to guide the process to obtain norms
whose level of generality corresponds to the apex level.

The remainder of this paper is structured as follows. In Section 2 we introduce our
model for norms generalization. In section 3 we present two algorithms to norm synthesis
and norm evaluation. In section 4 we look for an answer to our research question, by
presenting a set of tests which explore the generality of norms in order to figure out the
existence of a level of generality where norms may regulate the agents efficiently. In
Section 5 related works are presented and discussed. We also point out a possible and
hypothetical direction in which we may overcome them. Finally, in Section 6 we present
our conclusion and future works.

2. A Model for Norms Generalization
Before introducing our model consider the following toy scenario which will be used
along the text to exemplify some of its concepts. The scenario is composed by a simple
grid domain m×n where intersections represent vertices and edges represent paths which
connect such vertices. There are two agents on the grid, ag1 and ag2 which must depart
from an initial vertex to a goal one executing their traversal plans without getting in con-
flicts. A conflict is characterized as a collision occurring when an agent moves to a local
occupied by another agent. Moreover, agents may just move between vertices which are
adjacent.
Definition 1 (Language). Let L be a restrict form of a first order language, defined as a
5-uple 〈PredL ,VarL , ConstL , TypesL , ConecL〉, where PredL = {pred1, . . . , predm} is a
set of predicate symbols ∪ {False}, VarL = {v1, . . . ,vn} is a set of typed variable symbols,
ConstL = {c1, . . . ,ck} is a set of typed constant symbols, TypesL = {t1, . . . , tp} is a set of
types and ConecL = {∧} is a set of logical connectives.

Each symbol of predicate is associated with a finite set of terms. A term is a
variable or a constant symbol associated with a given type of TypesL , such that, they
form the set Terms = VarL ∪ConstL . In special, there is one predicate with zero terms:
False meaning false. The well-formed formulas are given by the formation rules of the
first-order logic considering the connectives in ConecL . It is established that variables
begin with capital letters while constants begin with lowercase ones and terms described
with distinct symbols represent distinct objects.

Example 1. Consider the grid domain previously introduced, the formula next(L1,L2)
represents that an arbitrary vertex L1 is adjacent to another arbitrary vertex L2 while the
formula at(ag1,L1) represents that the specific agent ag1 is at the vertex L1.

Definition 2 (System State). Let P = {p1, . . . , pm} be a set of all ground atomic formulas
with P ⊂ L and S = {s1, . . . ,sn} be a set of system states, where S ⊆ 2P . A state si =
{p1, . . . , pk} is a set of ground atomic formulas which holds in a given time i.

The states are built according to the hypothesis of closed world (predicates that
do not make part of a given state are considered false). We may say that the special
predicated False is prohibited to take part of any system state. As we will see, it is used
as part of norms definition and has impact on the norm generality.

Definition 3 (Action). Let A = {a1, . . . ,am} be a set of unground actions. An action ai =
〈Id,Par,Pre,Add,Del〉 is a 5-uple, such that, Id is a identifier, Par = {par1, . . . , parn} is a
set of parameters with Par⊂ Var, Pre = {p1, . . . , pk} is a set of preconditions which must
hold to ai be executed, Add = {p1, . . . , p j} is a set of effects which start to hold after the
action execution and Del = {p1, . . . , pl} is a set of effects which does not hold anymore
after the action execution, where Pre, Add, Del ⊂ L are unground atomic formulas. Let
A ′ = {a1, . . . ,az} be a set of ground actions, such that, an action a′i is a copy of ai where
its parameters are constants of ConstL and its sets are formed by ground atomic formulas.

From the set A partial and grounded actions may be obtained which, in turn,
are important to synthesise norms with different levels of generality (see algorithm 1 in
section 3). However, to act in a environment the agents perform grounded actions of A ′.

Example 2. To move between vertices, the agents may perform a grounded version of
action 〈move, {Ag1,L1,L2},{at(Ag1,L1),next(L1,L2)},{at(Ag1,L2)},{at(Ag1,L1)} 〉.

According to the action move, to an agent Ag1 move from a vertex L1 to a vertex
L2, such agent must be at L1 which, in turn, must be adjacent to L2. After executing
move, the agent will be at vertex L2 and the agent won’t be longer at the former vertex.
We will use Par(a), Pre(a), Add(a) and Del(a) along the text to refer that such sets are
components of a given action a ∈ A ∪A ′. However, in the examples we will use the a’s
signature1 to refer to it.

Definition 4 (MAS Domain). Let D = 〈S ,A ′,γ〉 be a domain of a MAS, such that, S
denotes a set of system states, A ′ denotes a set of (grounded) agent’s actions and γ :
S×A ′→ S denotes a deterministic and discrete transition function between system states,
such that, γ(s,a) = (s−Del(a))∪Add(a).

Other important concept of our model is conflict. The notion of conflict appears
in a variety of areas, and it is defined by reflecting the own characteristics of each one.
Conceptually, in this paper we consider a conflict as an event which may cause negative
impacts on the system as avoiding agents to accomplish their tasks and compromising the
system goal reachability. Formally, we define a conflict in terms of its effects.

Definition 5 (Conflict). Let C = {c1, . . . ,cm} be a set of conflicts which may occur during
the system execution, a conflict ci is defined as a set of atomic formulas which denotes its
effects, such that, ci = {p1, . . . , pn}, where ci ⊂ L .

1A signature is a concatenation between the a action’s identifier, an open parentheses, the action’s pa-
rameters and a close parentheses with no curly braces as move(Ag1,L1,L2), for example.

Example 3. A conflict which establishes a collision between agents on the grid may be
described as c1 = {at(Ag1,L1),at(Ag2,L1)}. Thus, according to c1, a collision occurs
when two distinct agents are on the same vertex L1.
Definition 6 (Conflict Instances). Given a conflict ci ∈ C , I (ci) = {c1

i , . . . , cn
i } is a set

of instances of ci, where an instance c j
i is a copy of ci with ground atomic formulas.

Example 4. An instance of conflict c1, from example 3, could be c j
1 =

{at(ag1,a),at(ag2,a)} denoting that both agents ag1 and ag2 are on the vertex a.
Definition 7 (Conflict State). A given state s ∈ S is said to be a conflict state if ∃ci ∈ C :
∃c j

i ∈ I(ci), such that, c j
i ⊂ s.

A way to avoid conflict states and preserve the system goal reachability is regulat-
ing the agents’ behaviors through norms.

Definition 8 (Norm). Let N = {n1, . . . ,nm} be a set of prohibitive norms, where a norm
ni is a rule of the form ϕ→

p
a, where ϕ = {p1, p2, . . . , pn} is a set of atomic formulas as

being a context activation with ϕ⊂ L and a ∈ A ∪A ′. Given a state s ∈ S, if ϕ holds in s,
then the action a is prohibited to be executed in s.

From now onward, we will use ϕ(ni) and a(ni) to refer, respectively, to the context
activation and prohibited action of given a norm ni ∈N . In the examples we refer to a(ni)
by its signature.

Example 5. A norm which may regulate the agents’ behavior in order to avoid collisions
on the grid may be defined as n1 = {at(Ag2,L2)} →

p
move(Ag1,L1,L2) which, in natural

language, it may be read as “if an agent Ag2 is on a vertex L2, then an agent Ag1 is
prohibited to move from a vertex L1 to vertex L2”.
Definition 9 (Norm Instance). Given a norm ni ∈ N , I(ni) = {n1

i , . . . ,n
m
i } is a set of

instances of ni, where an instance n j
i = ϕ′→

p
a′ is a copy of ni with ϕ′ ⊂ L being a set of

ground atomic formulas and Par(a′)⊂Const.

Example 6. An instance of norm n1, from example 5, is n j
1 =

{at(ag2,b)} →
p

move(ag1,a,b) which prohibits agent ag1 to move from the vertex

a to the vertex b if agent ag2 is on b.
Definition 10 (Norm Applicability). Given a state s ∈ S and a norm ni ∈ N , ni is said
to be applicable (or active) in s if ∃n j

i ∈ I(ni), such that, ϕ′(n j
i),Pre(a′(n j

i))⊂ s.
Definition 11 (Norm Generality). Let Sa(ni) and Sa(n j) be, respectively, the sets of
system states in which the norms ni,n j ∈ N are applicable, with ni 6= n j. We say that ni
is more generic than n j, denoted by ni >

g
n j, if Sa(n j)⊂ Sa(ni) and Sa(ni) 6⊂ Sa(n j).

Whether ni >
g

n j, then ni regulates all the behaviour that norm n j does, however

the opposite does not occur. Syntactically, we may say that ϕ(ni) subsumes ϕ(n j) and
a(ni) subsumes a(n j).

Example 7. Consider the following norms:

n2 = {False}→
p

move(ag1,a,b) n3 = {at(ag2,b),next(a,b)}→
p

move(ag1,a,b)

n4 = {at(ag2,L2),next(L1,L2)}→
p

move(ag1,L1,L2) n5 = {at(Ag2,b),next(a,b)}→p move(Ag1,a,b)

n6 = {at(Ag2,L2),next(L1,L2)}→p move(Ag1,L1,L2) n7 = { }→
p

move(Ag1,L1,L2)

The norm n2 is the less generic norm since it does not apply to any system state.
Thus, it is generalized by any other norm. On the other hand, since ϕ(n7) is empty, norm
n7 is applicable to all system states. Moreover, a(n7) subsumes all the other norm actions
(since any substitution of its parameters to the parameters of the other actions is possible),
then norm n7 is the most generic norm. Considering the norm n1 from example 5, we have
two distinct orders of norm generalities (note that norms n5 and n4 are not comparable):
i) n7 >

g
n1 >

g
n6 >

g
n5 >

g
n3 >

g
n2; and ii) n7 >

g
n1 >

g
n6 >

g
n4 >

g
n3 >

g
n2.

To each norm we assign a level of generality which is a value indicating how
generic a norm is in a given partial order. The more generic a norm is, the bigger is its
level of generality. Norms with certain properties in common are assigned with the same
level of generality k. Such norms are generalized by those with they are comparable with
a level k+n, with n > 0.

Definition 12 (Level of Generality). The level of generality of a given norm n∈N, NG(n)
is given by Equation 1

NG(n) =

0, if ϕ(n) = {False}
1

pred(n)+ 1
1+var(n)

, if ϕ(n) = {p1, . . . , pn}

1
1+ const(n)

+1, if ϕ = { }

(1)

In Equation 1, pred(n), var(n) and const(n) refer, respectively, to the number of
atomic formulas, variables and constants of a norm n. According to such equation, the
levels of generality are distributed along the interval [0,2]. The levels increase from the
norms whose activation context are False (NG = 0), going towards norms whose activation
context are formed by a set of atomic formulas different from False (NG ∈]0,1]) up to
norms whose activation contexts are empty sets (NG ∈]1,2] - norms that are always
true). The more atomic formulas and constants a norm has, the more specific (and mildly
restrictive) it is. However, as the number of atomic formulas decreases and the number of
variables increases, the norms becomes more generic (and restraining). This way, mildly
restrictive norms are assigned with levels of generality which put them more directed to
the left of the interval [0,2], while the restraining ones are assigned with levels which put
them more directed to the right of the given interval.

Example 8. The Figure 1 illustrates a partial order formed by the norms of example 7.
Such ordering is represented as a graph, where nodes correspond to norms and edges to
relations of generalities. Whether ni >

g
n j, then the edge depart from n j to ni.The values

in red correspond to the levels of generality of each norm.

Definition 13 (System Goal). Let G = {p1, . . . , pn} be a set of ground atomic formulas
as a declarative system goal, where G ⊂ L .

Lastly, one can define what a Normative Multiagent System is in our perspective.

Definition 14 (Normative MAS). Let nMAS = {Ag,D,s0,G ,N ,C} be a normative Mul-
tiagent System, such that, Ag = {ag1, . . . ,agm} denotes a set of agents, D denotes a MAS
domain, s0 ∈ S denotes a system initial state, G denotes a system goal, N = {n1, . . . ,nk}
denotes a set of norms and C = {c1, . . . ,c j} denotes a set of conflicts.

Figure 1. A partial order of norm generalities.

3. Norm Synthesis and System Execution
In this section we introduce the algorithms 1 and 2 which, respectively, synthesizes a set
of norms and evaluates the norms’ performance in the system execution. Basically, the
algorithm 1 synthesises all ungrounded and grounded norms while the algorithm 2 groups
the obtained results by level of generality. This way, we can explore the greatest amount
of levels of generality and investigate how they impact on the system’s goal reachability.

Algorithm 1 Norm Synthesis
Require: M , A , Pred⊂ L

1 N ,N ′← /0

2 X ← 2Pred×A
3 foreach (ϕ,a) ∈ X do
4 N ← ϕ→

p
a

5 foreach n ∈N do
6 j← getNumberOfTerms(n)
7 foreach p ∈ [0, j] do
8 N ′← N ′∪
9 getOtherNorms(n,M ,p)

10 return N ′

The algorithm 1 takes as input a set of atomic
formulas Pred and actions A , both ungrounded,
and a mapper M which associates substitutions
from variables to constants. Firstly, it synthe-
sises all unground norms combining the possi-
ble activation contexts (with lengths from 0 to
|Pred|) with the actions. For this, the algorithm
calculates the power set of Pred multiplying it
by A (line 2). To each pair (ϕ,a) of set X , a
norm is obtained and saved in the set N (line
4). Secondly, the algorithm obtains partial and
grounded versions of norms of N through the
method getOtherNorms (line 6). For each norm
n ∈ N , such method takes its variables p to p,
with 0 ≤ p ≤ j (with j the number of terms of
n obtained by the method getNumberOfTerms)

to be substituted by all constants of same type (according to map M). Each possible
substitution generates a new norm which is assigned with a given level of generality (ac-
cording to the definition 12) and is included in the set N ′ (consider the example 7, the
norms n1, n6 and n7 were obtained in the first step while n2, n3 and n4 in the second one).

The algorithm 2 takes as input the previous set N ′ and map M , the sets of un-
grounded atomic formulas Pred′ and Pred′′ (which are ungrounded versions of s0 and G
from definition 14, respectively) and a MAS. The algorithm works in three steps. Firstly,
it obtains all possible initial states and system goals, S0 and SG, respectively, through the
methods getSMAInitialStates (line 1) and getSMAGoals (line 2). Such methods instantiate
the formulas of Pred′ and Pred′′ by substituting their variables by constants (according to
M). In the second step, the MAS is executed multiple times through method run (line 6)
varying its current configuration - a quadruple formed by a norm, an initial state, a goal
system and a conflict. To certify the MAS’ goal will not be satisfied before its launching,
the MAS runs only if the intersection between its initial state and goal is empty (line 5).

As the configurations change, the agents will execute different sequences of actions to
satisfy the system goal and, in this dynamic, different situations of conflicts may arise.

Algorithm 2 Norms Evaluation.
Require: N ′, M , Pred′,Pred′′ ⊂ L , c ∈ C ,

MAS
1 S0← getSMAInitialStates(Pred′, Map)
2 SG ← getSMAGoals(Pred′′, Map)
3 foreach norm n ∈N ′ do
4 foreach state s0 ∈ S0 and G ∈ SG do
5 if s0∩G = /0 then
6 sat,tim,conf ← MAS.run(s0, G ,

c, n)
7 storeResults(sat,tim,conf)

8 getLevelsPerformance()

Given a norm n, its performance in the sys-
tem may: (i) avoid the conflict and make
the system goals feasible to be reached; (ii)
avoid the conflict to the detriment of sys-
tem goals reachability (the system timeout
since the effort to the goals to be satisfied
becomes even greater or there are no al-
ternative actions to be executed); (iii) not
avoid the conflict which cause the system
interruption (since we consider that con-
flicts are impediments to the system goals
be satisfied). The method run returns a
vector of length 3, indicating whether: the
goal were satisfied (sat - according to case
i), the execution finished by timeout (tim -

according to case ii), or there was a conflict (conf - according to case iii). The results
obtained at each execution are saved by method storeResults (line 7). At the end of the
algorithm, the results are summarized by method getLevelsPerformance (line 12) which
calculates, to each level of generality, the percentage of tests which ended up in goal satis-
fied, conflict occurrence and timeout. From the summarized results, we intend to identify
how the norms’ levels of generality influence on the system goals reachability.

4. Tests and Results

We have developed a simulator of MAS in Java, which implements the algorithms 1 and 2,
to empirically evaluate the performance of norms in avoiding conflicts and keeping the
system goals reachable. We perform experiments in two distinct scenarios: the traffic sce-
nario domain, presented in section 2 and a scenario where agents (called as employees)
try to access a set of files available by a given organization. In this scenario, agents may
have individual goals which may be incoherent with the system goals (as open certain
documents not specified by the system), where conflicts may arise since obtain certain in-
formation may compromise the organization’s data and privacy. Thus, the norms must be
able to regulate the agents in order to keep the data safe and the system goals reachable.
We implemented a systematic sampling in methods getInitialStates and getSMAGoals of
algorithm 2 with confidence level of 95% with a error margin of 5% for both scenarios.
Moreover, in the graphics of the tests, the x-axis represents the levels of generality of
norms while the y-axis represents rates of satisfiability, conflicts and timeout. Each sce-
nario was tested ten times on a computer using a Intel Core i5 5200U processor running
at 2.2GHz, with Ubuntu 16.10 64-bit as operating system and 8GB of memory.

4.1. Grid Scenario Evaluation

We tested the system varying the number of agents on the grid from 2 to 9. They used the
Manhattan distance to estimate the best plan to reach the system goals. Let |agents| and
|Vertices| be, respectively, the number of agents and vertices on the grid, then each agent

had 2|Vertices| steps to conclude its plan and the system timeout in |agents| ∗2|locals|+1
steps.

Figure 2. The rate of satisfiability for all
executions.

Figure 2 illustrates the curves of satisfia-
bility rates. Generally speaking, the curves
grow smoothly up to the level 0.8, reaching
their highest value at the level 0.833 and,
then, decreasing abruptly until the level
2. This happens because from the level 0
to 0.8 the norms are very specific which
makes them inefficient in avoiding colli-
sions as they hardly ever become active.
However, as they become more generic
(the number of atomic formulas decreases
and the number of variables increases) the
satisfiability rate grows somewhat since
more agents’ behaviors start to be regu-
lated. Furthermore, as the number of agents increases, the rate of satisfiability decreases,
since as more agents are on the grid, more collisions are likely to occur (for 2 agents, for
example, the rate is initially about 66% while for 3 agents it is about 27%). At the level
0.833 there is uniquely the norm n1 = {at(Ag2,L2)} →

p
move(Ag1,L1,L2) (from exam-

ple 5 of section 2), thus no collision occurs when this norm is active. For 2, 3 and 4 agents
on the grid, the satisfiability rate is high because it is easier to obtain alternative paths to
achieve the system goal. However, for 5 or more agents, such rate is low since situations
in which the agents are surrounded by other agents and can not move became common.

After the level 0.833, the norms are of the form { } →
p

a. This type of norm are

very generic and severely restrains the agents’ autonomy since it applies to every system
state. Such norms reduce the number of alternative actions to be taken in place of those
that have been prohibited. Thus, achieving the system goal become a more complex or
unfeasible task and, consequently, the satisfiability rate started to decrease. At level 2,
there is uniquely the norm n7 = { } →

p
move(Ag1,L1,L2) (from example 5 of section 2)

which prevents the agents from moving, then no goal can be satisfied and the satisfiability
rate is 0. Figure 4 illustrates the curves of conflict rates. As the number of agents increases
the rate of conflicts increases as well. For all curves, such rate started in a given positive
value and decreased smoothly until the level 0.8 becoming 0 at level 0.833 (due to the
norm n1 as explained previously). After that level, the rate of conflicts started to grow
since the norms become more generic and strictly, thus the number of paths to be chosen
became reduced and the agents were more susceptible to cross and collide. At level 2, the
rate of conflicts became 0 since no agent can move (due to the norm n7).

Lastly, figure 3 illustrates the curves of timeout rates. For all curves, as the level
of generality gets bigger, the rate of timeout, which started as 0, keeps unchangeable until
level 0.8. Such results correspond to executions with mildly restrictive norms. Since
the agents had enough time to accomplish the system goals none of them got stuck in
a given vertex and, consequently, there was no timeout for the interval [0,0.8] of levels
of generality. Thus, conflicts occurred for some configurations and for others the system

Figure 3. The rate of timeouts for
all executions.

Figure 4. The rate of conflicts for
all executions.

goals were satisfied. At level 0.833 the rate of timeout gets bigger as the number of agents
increases on the grid. Since such results refers to executions with the norm n1, the more
agents are on the grid, the more vertices are occupied. Then, the agents got stuck in
their depart vertices whereas was not possible to move to an adjacent vertex which was
occupied. For all curves, the rate of timeout reached the value of 100% at level 2. This
occurred because of norm n7 which prevented the agents from moving to any vertex.

With these results we may think there exists a level of generality where norms
tend to be capable of avoiding conflicts and keeping the goals reachable as much as pos-
sible. Let us call that level as apex level. According to the grid scenario, the apex level
corresponds to the level 0.833 (around the center of the domain). In order to look further
about the apex level, in the next section we provide some tests in another domain.

4.2. Security Domain Evaluation

In this scenario, an organization shares with its employees a set of documents. Such
documents are classified as public or confidential while the employees, in turn, as low,
medium or high according to the roles which they play in the company. The documents
are available in a repository of a local server which is accessible from any computer of
the organization’s internal network. Then, to open a given document an employee must
provide his credentials to access the repository. However, due to data protection and
privacy issues the confidential documents must be open only by high employees. Thus,
in this context, when a low or medium employee opens a document of that type a conflict
situation occurs. Although opening a confidential document by those employees does not
make part of the system goal, it can make part of the individual goal of some of them.

We have tested this scenario with 10 agents and 30 documents. Basically, the
agents’ behaviour consisted of entering the repository, trying to open the documents al-
located to it by the system goal or those ones related to its individual goals and, finally,
leaving the repository. Each initial state consisted in varying the classifications of em-
ployees and documents. Moreover, in all initial states the employees were logged out to
the repository. On the other hand, each system goal consisted in varying the documents
the employees should open. However, 30% of employees (low and medium) had indi-
vidual goals which were not coherent with the system goal, that is, they intended to open
confidential documents. Moreover, the agents decided with a 50% of chance whether they
should accomplish the system goal or their individual ones.

Figure 5. The results for Security Scenario.

Figure 5 illustrates the curves
of satisfiability, conflict and
timeout rates. The norm n8
= {roleLevel(Ag1,low),
info(Doc,confidential)}
→
p

open(Ag1,Doc), which is at

level 0.428, is the efficient norm
for this scenario being capable
of avoiding conflicts and making
the system goal reachable. Such
level corresponds to the apex
level for this scenario and, dif-
ferently from the grid scenario
where there was only the norm n1
at the corresponding apex level, it is composed by many norms. The most norms of the
level 0.428 are inefficient in avoiding conflicts, then its rate of satisfiability is affected by
the low system performance when they rule the agents’ behaviours. This way, the shape
of the current apex level is less evident than that of the grid domain. Nevertheless, the
biggest rate of satisfiability is still found in the apex level (around 40%).

As in the grid domain, before the apex level the norms are very specific and they
hardly become active. Consequently, the agents have great autonomy to open the docu-
ments they wish which makes the rate of conflict for the interval [0,0.4] be high (around
60%) and the timeout be 0 (unless for levels 0.333 and 0.4). After the apex level, the
norms start to become more strict having less atomic formulas. Whether a given norm
prohibits an agent to open his target document and no alternative action in this scenario
exist, the rate of timeout start to increase while the others rates decrease. However, the
timeout declines from the level 0.454 to 0.5 and from 0.8 to 1.333 (which makes the oth-
ers rates increase again). This happens because the levels 0.5 and 1.333 have one less
formula, in relation to their previous levels, with all terms being constants. This way, the
norms in levels 0.5 and 1.333 are not more genetic than those in the levels 0.454 and 0.8,
respectively, thereby more agents became capable again to open their target documents
which increases the conflicts and satisfiability rates. At last, the rate of timeout ends up
50% while the satisfiability and conflict ones ends up, respectively, 20% and 30%. Even
though the current apex level has a satisfiability rate more discrete than that of the grid
scenario, such apex level was found exactly in the center of the domain.

4.3. Discussion

According to the results, the apex level was found in the center of the domain or next
to it. Before the apex level, the most norms showed to be mildly restrictive giving to
the agents much freedom to act as they wished. Consequently, many conflicts occurred
during the system execution. After the apex level, the most norms showed to be very strict
giving to the agent low freedom to perform their actions. Consequently, the system did
not satisfied its goal and timed out in many tests. On the basis of these data, we may say
that norms which do not belong to the apex level impact negatively on the reachability
of the system goal. On the other hand, the apex level showed to be an intermediate
level of generality which have, at least, one norm capable to maximize the system goal

reachability and minimize the occurrence of conflicts balancing control and autonomy as
much as possible.

The appearance of the apex level around the center of the domain is resulting from
the way which our model organizes the norms (at least to problems which admit one norm
as a solution to establish the social order). We suppose we can use this fact as a heuristic
to guide a search to find an efficient norm for a given domain just synthesizing the norms
from a selected set of levels of generality (those around the center of the domain). For
domains where the apex level may not be found around their center, a mechanism to
decide by which levels of generality the search must start still need be provided.

5. Related Works
A method to synthesize norms which gives the agents the maximum autonomy to accom-
plish their goals is proposed in [Fitoussi and Tennenholtz 1998]. The authors employed
the concept of minimality. A norm n1 is said to be minimal if it is useful and there is no
other norm n2 which is more specific than n1. Although a minimal norm gives the agents
great flexibly to perform their actions as they wish, a minimal norm is, in the context of
our work, the most mildly restrictive norm. Depending on the application domain, the
chances of conflicts occur may be high and, according to our tests, synthesizing norms
with an intermediate level of generality can make the system performs better in terms of
avoiding conflicts and satisfying goals.

In [Morales et al. 2013], a normative network in which norms are organized hi-
erarchically via generalization relationships is proposed. During the system execution,
as conflicts occur, norms are synthesized to avoid them in the future. Those norms are
inserted in the network which has its structure updated in a way that just when all children
of a potential generalization exist, a new norm is created to generalize them (the children
become inactive).The network is built and restructured until no conflicts occur. However,
until the system get in a stable situation, this is accomplished trough different conflicts
occurrence. In many domains, such incidents are not admissible implying in high costs to
implement recovery actions and making the system goals unfeasible to be reached.

Posteriorly, in [Morales et al. 2014] the same authors proposed a new method to
obtain a normative network where the generalization relationships are inferred through
an ontology which structures the domain knowledge as a tree representing a taxonomy of
terms. In the same way as before, as conflicts occur, norms are synthesized to avoid them.
Whether two or more norms are generalizable, a new norm is inferred to generalize them
taking into account the terms in the ontology and selecting alternative more general terms.
Such proposal also has the limitation to allow conflicts for a while. However, this new
approach does not need that all children to its parent be inferred. Thus, the occurrence of
conflicts may decrease along the system execution in relation to their former work.

6. Conclusion
In this paper we have presented a model for exploring the generality of norms. Our aim
was to find out a level of generality where norms are capable to avoid conflict and keep
the system goals reachable. We found, for two distinct domains, that there exists a level of
generality, which we called as apex level, where exists a norm which tend to be efficient
in avoiding conflicts and ensuring goals reachability as much as possible. As future works

we plan to evaluate empirically other scenarios where more than one type of conflict may
occur and a set of distinct norms must be necessary to efficiently regulate the agents in
order to further characterise the existence of the apex level.

References
Boella, G. and van der Torre, L. (2004). Regulative and constitutive norms in norma-

tive multiagent systems. In Proc. of the Ninth Int. Conf. on Principles of Knowledge
Representation and Reasoning, KR’04, pages 255–265. AAAI Press.

Boella, G. and van der Torre, L. (2007). Norm negotiation in multiagent systems. Inter-
national Journal of Cooperative Information Systems (IJCIS), 16(2).

Christelis, G. and Rovatsos, M. (2009). Automated norm synthesis in an agent-based plan-
ning environment. In Proceedings of The 8th International Conference on Autonomous
Agents and Multiagent Systems, volume 1 of AAMAS ’09, pages 161–168, Richland,
SC. International Foundation for Autonomous Agents and Multiagent Systems.

Fitoussi, D. and Tennenholtz, M. (1998). Minimal social laws. In Proc. of the Fifteenth
National/Tenth Conf. on Artif. Intell./Innovative App. of Artif. Intell., page 26–31.

Frantz, C. K. and Pigozz, G. (2018). Modeling norm dynamics in multi-agent systems.

Morales, J., López-Sánchez, M., and Esteva, M. (2011). Using experience to generate
new regulations. In Proc. of IJCAI 2001, page 307–312.

Morales, J., López-Sánchez, M., Rodrı́guez-Aguilar, J., Wooldridge, M., and Vascon-
celos, W. (2014). Minimality and simplicity in the on-line automated synthesis of
normative systems. In AAMAS.

Morales, J., Lopez-Sanchez, M., Rodriguez-Aguilar, J. A., Wooldridge, M., and Vascon-
celos, W. (2013). Automated synthesis of normative systems. In Proc. of AAMAS
2013, pages 483–490.

Onn, S. and Tennenholtz, M. (1997). Determination of social laws for multi-agent mobi-
lization. Artificial Intelligence, 95(1):155 – 167.

Savarimuthu, B. T. R., Cranefield, S., Purvis, M., and Purvis, M. (2008). Role model
based mechanism for norm emergence in artificial agent societies. In Proc. of COIN
2008, pages 203–217.

Shoham, Y. and Tennenholtz, M. (1995). On social laws for artificial agent societies:
off-line design. Artificial Intelligence, 73(1):231 – 252.

